53-语言模型
53 语言模型
语言模型的目标:
假设长度为T的文本序列中的词元依次为x~1~,x~2~,…,x~T~。 于是,x~t~(1≤t≤T) 可以被认为是文本序列在时间步t处的观测或标签。 在给定这样的文本序列时目标是估计序列的联合概率P(x~1~,x~2~,…,x~T~)
学习语言模型
基本想法:
P(x~1~,x~2~,…,x~T~) = P(x~t~∣x~1~,…,x~t−1~). (1 <= t <= T) 共T个结果相乘
例如,包含了四个单词的一个文本序列的概率是:
P(deep,learning,is,fun)=P(deep)P(learning∣deep)P(is∣deep,learning)P(fun∣deep,learning,is)
为了训练语言模型,我们需要计算单词的概率, 以及给定前面几个单词后出现某个单词的条件概率。 这些概率本质上就是语言模型的参数。训练数据集中词的概率可以根据给定词的相对词频来计算。 例如,可以将估计值P^(deep) 计算为任何以单词“deep”开头的句子的概率。 一种(稍稍不太精确的)方法是统计单词“deep”在数据集中的出现次数, 然后将其除以整个语料库中的单词总数。 这种方法效果不错,特别是对于频繁出现的单词。
基本想法的问题:
由于连续单词对“deep learning”的出现频率要低得多, 所以估计这类单词正确的概率要困难得多。 特别是对于一些不常见的单词组合,要想找到足够的出现次数来获得准确的估计可能都不容易。 而对于三个或者更多的单词组合,情况会变得更糟。 许多合理的三个单词组合可能是存在的,但是在数据集中却找不到。 除非我们提供某种解决方案,来将这些单词组合指定为非零计数, 否则将无法在语言模型中使用它们。 如果数据集很小,或者单词非常罕见,那么这类单词出现一次的机会可能都找不到。
马尔可夫模型与n元语法
- 如果P(x~t+1~∣x~t~,…,x~1~)=P(x~t+1~∣x~t~), 则序列上的分布满足一阶马尔可夫性质。 阶数越高,对应的依赖关系就越长。 这种性质推导出了许多可以应用于序列建模的近似公式:
- P(x~1~,x~2~,x~3~,x~4~) = P(x~1~)P(x~2~)P(x~3~)P(x~4~)
- P(x~1~,x~2~,x~3~,x~4~) = P(x~1~)P(x~2~ |x~1~)P(x~3~|x~2~)P(x~4~|x~3~)
- P(x~1~,x~2~,x~3~,x~4~) = P(x~1~)P(x~2~ |x~1~)P(x~3~|x~1~,x~2~)P(x~4~|x~2~,x~3~)
自然语言统计
- 在真实数据上如果进行自然语言统计:
根据前几节介绍的时光机器数据集构建词表,并打印前10个最常用的单词
import random |
[('the', 2261), |
- 正如我们所看到的,最流行的词看起来很无聊, 这些词通常被称为停用词(stop words),因此可以被过滤掉。 尽管如此,它们本身仍然是有意义的,我们仍然会在模型中使用它们。 此外,还有个明显的问题是词频衰减的速度相当地快。 例如,最常用单词的词频对比,第10个还不到第1个的1/5。 为了更好地理解,我们可以画出的词频图:
freqs = [freq for token, freq in vocab.token_freqs] |
我们可以发现:词频以一种明确的方式迅速衰减。 将前几个单词作为例外消除后,剩余的所有单词大致遵循双对数坐标图上的一条直线。
- 我们来看看二元语法的频率是否与一元语法的频率表现出相同的行为方式。
bigram_tokens = [pair for pair in zip(corpus[:-1], corpus[1:])] |
[(('of', 'the'), 309), |
这里值得注意:在十个最频繁的词对中,有九个是由两个停用词组成的, 只有一个与“the time”有关。 我们再进一步看看三元语法的频率是否表现出相同的行为方式。
trigram_tokens = [triple for triple in zip( |
[(('the', 'time', 'traveller'), 59), |
- 最后,我们直观地对比三种模型中的词元频率:一元语法、二元语法和三元语法。
bigram_freqs = [freq for token, freq in bigram_vocab.token_freqs] |
读取长序列数据
由于序列数据本质上是连续的,因此我们在处理数据时需要解决这个问题。在前几节中我们以一种相当特别的方式做到了这一点: 当序列变得太长而不能被模型一次性全部处理时, 我们可能希望拆分这样的序列方便模型读取。
在介绍该模型之前,我们看一下总体策略。 假设我们将使用神经网络来训练语言模型, 模型中的网络一次处理具有预定义长度 (例如n个时间步)的一个小批量序列。 现在的问题是如何随机生成一个小批量数据的特征和标签以供读取。首先,由于文本序列可以是任意长的, 例如整本《时光机器》(The Time Machine), 于是任意长的序列可以被我们划分为具有相同时间步数的子序列。 当训练我们的神经网络时,这样的小批量子序列将被输入到模型中。 假设网络一次只处理具有n个时间步的子序列。下画出了从原始文本序列获得子序列的所有不同的方式, 其中n=5,并且每个时间步的词元对应于一个字符。 请注意,因为我们可以选择任意偏移量来指示初始位置,所以我们有相当大的自由度。
因此,我们应该从中选择哪一个呢? 事实上,他们都一样的好。 然而,如果我们只选择一个偏移量, 那么用于训练网络的、所有可能的子序列的覆盖范围将是有限的。 因此,我们可以从随机偏移量开始划分序列, 以同时获得覆盖性(coverage)和随机性(randomness)。 下面,我们将描述如何实现随机采样(random sampling)和 顺序分区(sequential partitioning)策略。
随机采样
- 在随机采样中,每个样本都是在原始的长序列上任意捕获的子序列。 在迭代过程中,来自两个相邻的、随机的、小批量中的子序列不一定在原始序列上相邻。 对于语言建模,目标是基于到目前为止我们看到的词元来预测下一个词元, 因此标签是移位了一个词元的原始序列。下面的代码每次可以从数据中随机生成一个小批量。 在这里,参数
batch_size
指定了每个小批量中子序列样本的数目, 参数num_steps
是每个子序列中预定义的时间步数。
def seq_data_iter_random(corpus, batch_size, num_steps): #@save |
- 下面我们生成一个从0到34的序列。 假设批量大小为2,时间步数为5,这意味着可以生成 ⌊(35−1)/5⌋=6个“特征-标签”子序列对。 如果设置小批量大小为2,我们只能得到3个小批量。
my_seq = list(range(35)) |
顺序分区
- 在迭代过程中,除了对原始序列可以随机抽样外, 我们还可以保证两个相邻的小批量中的子序列在原始序列上也是相邻的。 这种策略在基于小批量的迭代过程中保留了拆分的子序列的顺序,因此称为顺序分区。
def seq_data_iter_sequential(corpus, batch_size, num_steps): #@save |
- 基于相同的设置,通过顺序分区读取每个小批量的子序列的特征
X
和标签Y
。 通过将它们打印出来可以发现: 迭代期间来自两个相邻的小批量中的子序列在原始序列中确实是相邻的。
for X, Y in seq_data_iter_sequential(my_seq, batch_size=2, num_steps=5): |
- 现在,我们将上面的两个采样函数包装到一个类中, 以便稍后可以将其用作数据迭代器。
class SeqDataLoader: #@save |
- 最后,我们定义了一个函数
load_data_time_machine
, 它同时返回数据迭代器和词表, 因此可以与其他带有load_data
前缀的函数类似地使用。
def load_data_time_machine(batch_size, num_steps, #@save |